24 февраля 2022 г.

Мембранные материалы для водородной энергетики

Парижское соглашение Так ли безупречны его основные положения?

Глобальное потепление. Парниковые газы. Курс на декарбонизацию экономики.

«углеродный след» (налоги, санкции) Нефть , газ, уголь, сталь...

Энергосберегающие технологии. Альтернативная энергетика.

Сжигание ископаемого топлива (уголь, нефть). Оксиды серы и азота, СО, продукты неполного сгорания, свинец (присадки).

Альтернативная энергетика

Немецкая электроэнергетика переходит на возобновляемые источники

Получение: электролиз, паровой риформинг метана, парциальное окисление метана, паровой риформинг спиртов...

Очистка: палладиевые мембраны, неметаллические мембраны, композиционные мембраны... Хранение: сжиженный, под высоким давлением, в сорбированном виде, химически связанный...

Топливные элементы: на протонпроводящих мембранах, прямые метанольные, твердооксидные...

School - 2 Course be

fuel cell (membranes, catalysts)

hydrogen purification and storage hydrogen production (catalysts, membranes)

Схема работы топливного элемента

Топливные элементы, Обратный электродиализ, Металл-ионные аккумуляторы, Проточные батареи, Водоочистка...

Селективность

Числа переноса

Газопроницаемость

Структура пор и каналов в ионообменных мембранах (W.Y. Hsu, T. D. J. Gierke. Membr. Sci. 1983. 13. 307)

$$-\left[(CF_2 - CF_2)_{x} (CF - CF_2)_{y} \right]_{m}$$

$$(OCF_2 CF)_{z} - O(CF_2)_{2} SO_{3}H$$

$$|_{CF_3}$$

$-(CF_2-CF_2)_m-(CF_2-CF)_n-$

 $-(CF_2-CF_2)_m-(CF_2-CF)_n-$

O-CF₂CF-CF₂-CF₂SO₃H

Структура перфторированных сульфированных мембран с длинными и короткими боковыми цепями.

Зависимость протонной проводимости мембран из перфторированного сульфокатионита в контакте с водой от их ионообменной способности при 25 ° С. Мембраны с короткой боковой цепью выделены красным цветом.

9

O-CF

Prikhno I.A., Safronova E.Yu., Stenina I.A., Yurova P.A., Yaroslavtsev A.B./ Membranes and Membrane Technologies, 2020, V. 2, No. 4, pp. 265–271

0,8

0,9

1,0

Зависимость проницаемости по кислороду мембран перфторированных сульфокатионитов от их ионообменной емкости при 25 ° C.

1,1

1,2

1,3

1,4

Гетерогенные мембраны

Привитые мембраны

I mark - 2 Contract

SEPTER - 2 CONTRACT

«Фазовый» состав полученных мембран в контакте с водой.

Golubenko D.V., Safronova E.Y., Ilyin A.B., Shevlyakova N.V., Tverskoi V.A., Dammak L., Grande D., Yaroslavtsev A.B./ Materials Chemistry and Physics 2017, V.197, p.192-199

УФ-прививка

Химическая структура полиметилпентена

Зависимость ионной проводимости мембран ПМП-ПСт от степени прививки полистирола

D.V. Golubenko, Yaroslavtsev A.B./ Mendeleev Commun., 2017, v.27, p.572–573

14

Schnell - 2 Contractor

Гибридные мембраны

Микрофотография мембраны МФ-4СК, модифицированной гидратированным оксидом кремния, размер частиц ≈ 2-5 нм

Микрофотография мембраны Nafion + 3 мас.% Cs_xH_{3-x}PW₁₂O₄₀, отливка с наночастицами, размер частиц ≈ 6-18 нм

Схема строения системы пор и каналов в гидратированной мембране МФ-4СК.

Схема строения системы пор и каналов в мембране МФ-4СК, допированной наночастицами.

Селективность процессов переноса

Числа переноса по анионам для мембран МФ-4СК исходных и допированных фосфатом циркония.

Раствор элктролита	МФ-4СК	МФ-4СК-HZrP
0.1 M LiCl	0.0023	0.0007
1 M LiCl	0.0099	0.0044
0.1 M NaCl	0.0033	0.0007
1 M NaCl	0.033	0.0083
0.1 M KCl	0.029	0.0054
1 M KCl	0.032	0.023

Селективность гибридных мембран

Ŷ θ Схема распределения ионов в структуре гибридных мембран, содержащих гиброфильные наночастицы.

Схема распределения ионов в структуре мембран. Дебаевский слой вблизи стенок поры обозначен голубым цветом, а электронейтральный раствор в центре поры - белым.

 M^+

Максимальная мощность ТЭ

Зависимость максимальной мощности ТЭ с мембраной Nafion 212 и Nafion 212/1 wt.%SiO₂/1.9 wt.% Cs_xH_{3-x}PW₁₂O₄₀ от влажности газов Gerasimova E., Safronova E., Ukshe A., Dobrovolskii Yu., Yaroslavtsev A./ Chemical Engineering Journal, 2016, V.305, P.121-128

ИОНХ РАН –

ИΠΦΧ ΡΑΗ

Помещение в котором смонтированы остальные компоненты ВСБПАЭ

Модули солнечных батарей

Баллоны для водорода

Системааккумулирования энергии на 10 кВт на основе водородного цикла, ГК №14.604.210122 ИОНХ РАН-ИПХФ РАН

Привитые мембраны в ТЭ

Golubenko D.V., Gerasimova E.V., Yaroslavtsev A.B./International journal of hydrogen energy, 2021, doi.org/10.1016/j.ijhydene.2021.01.102

Deput - a Course

